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INSTABILITIES, TURBULENCE, AND THE PHYSICS OF FIXED POINTS*

Minh Duong-van
University of California
Lawrence Livermore National Laboratory
Livermore, CA 94550

ABSTRACT

By solving the recursion rghtion of a reaction-diffusion equation (involving a
quadratic map and nearest—neighﬁor contributions) on a lattice, we find two distinct:
routes to turbulence, both of which reproduce commonly observed phenomena: the
Feigenbaum route, with period-doubling frequencies, which evéntm]]y leads to chaotic
turbulence with a flat Fourler spectrum; and a much more general route with
noncommensurate frequencies and frequency entrainment, and locking, which eventually
leads to a Kolmogorov-type (f~ 513) spectrum. Intermittency and large-scale aperiodic
spatial patterns, also observed in physical systems, are reproduced in this new route. We
discuss the entropy flows comnected with the recursion relation. and note a similarity
between the underlying physics of the patterns generated in our simulations and the

physics of the Prigogine dissipative structures.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG—48.



Experimental evidence supporting Feigenbaum's route to turbulencel'2 has become
richer since 1978. In this route, nonlinear systems manifest chaos via.period- doubling
bifurcations. For example, Rayleigh-Bénard systems with low3"5 and intermediate®
Prandtl numbers exhibit this route. In detailed experiments on low- aspect-ratio
Rayleigh-Bénard cells, Giglio et ;1.6 saw four period doublings and obtained values of &

1 universal § = 4.6692 within their experimental error.

7-11

that agree with Feigenbaum's

When the aspect ratio is large, however, very different behavior is found. As
the stress parameter (the Rayleigh number, in the case of Rayleigh-Bénard systems) is
increased, cascades of instabilities are observed, each step of which adds new
3,8,10

complications to the convective behavior. Unstable patterns are formed and

temporal chaos® sets in, with alternating random bursts and quietness: this is called
int'.eﬂnitt:ency.3‘8 Noncommensurate frequencies arise in the Fourier spectrum of the
chaotic variable, and entrainment and locking occur as the stress parameter is va,:-ied.:“""8

In this paper we show that both these routes to turbulence, with 2all the properties
Just described, can be simply simulated with a quadratic map at each site of a spatial
lattice and with a coupling between nearest—neighbor sites. Our most significant result is
that this new route leads to a Kolmogorov-type turbulence,%13 with P(f) « £/3, where
the exponent 5/3 is shown to be a consequence of a quadratic map.

Let u represent the chaotic variable: it may be a velocity component or a
temperature fluctuation of the system being studied. We build a lattice of sites with a
quadratic map u -» Q(\,u) at each site, and allow interaction between nearest neighbor
gites through a coupling parameter g. We assign a random value of u to each lattice site,
and let the lattice evolve in time steps tn =nt,n=1, 2, 3,..., where T is the Poincaré

time of the system. We find the same behavior for all quadratic Q(\,u): for example,



QOwY) = Mu(l-v), | . (a)
QO\u) = \sinfru) | (1)

give the same behavior. For simplicity, we use the logistic map, Eq. (1a), in this study. In

one dimension, we use the prescriptionu' 15

U, (m) = Au (m)1-u (@] + g [u (m+1) + u_(m-1) - 2u (m)], (2

where the index m spans the N lattice points m = 1, 2, ..., N. Similarly, in two dimensions

we have

Uy, 0 0 =M, G 0 [1-0,6, K)
+ $ 10,0+ 0+ 9, (1,0 - 20,6, W)

+ Su 0, k1) + v G, k-1) - 2u G, K], (3)

where the indices j, k span the lattice in the x and y directions, respectively.
With Eq. (2) [the same results are found for Eq. (3)], two routes to turbulence are

observed, in which the Feigenbaum route is seen as a special case.
For small g (e.g.. g = 0.001), when N\ approaches the accumulation point 7..“. the

Fourier spectrum of the time sequence u u(rn) for a particular m shows period-doubling
bit'urca.tions.1 (With \ =3.569 and g =0, for example, we obtain a period-doubling
Fourier spectrum that agrees well with that obtained by Giglio et al.s) As g increases,
the peaks in the Fourier spectrum become wider, as observed by Mauer and Libchaber.3
In our study, this width increase is a consequence of the dissipative term controlled by g.
As \ increases to 4 (for any value of g) the spectrum becomes flat and chaotic. |
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Only in special cases (such as in Rayleigh-Bénard systems with low asﬁect ratio)
does the turbulence observed in .nature follow the Feigenbaum route. More generally (as
in Rayleigh-Bénard systems with large aspect ratios), the instabilities and turbulence
show richer 1:a<al'|,avi01's.7"11 One observes noncommensurate frequencies in the Fourier
spectrum and the phenomena of frequency entrainment and locking; complex
quasi-periodic, aperiodic, and intermittent time histories of the values of chaotic
variables at individual points in the system; and similar time variations in the spatial
patterns formed in certain systems.3 By iterating Eq. (2) or (in the case of the spatial
patterns) Eq. (3) with values ‘of g away from zero, we can reproduce all these phenomena,
provided we restrict ) to the Felgenbaum simple fixed potnts reglon 1 < M < 3.

We built a periodic one-dimensional lattice with N = 2000, a.nd recorded the time
evolution and the corresponding Fourier transform of u‘? for-times upton= 212 and for
a variety of values of \ and g (m is arbitrarily chosen equal to 13). We found that for
every value of g, there is a ‘k.m at which the u eventually blows up (diverges) with time
n. Parametrizing kmax as a function of g, we obtain an approximate relation XM =3
-bg, where a and b are positive quantities whose values depend on the lattice site
observed. |

For illustration, we choose g = 0.915 and vary \ from 'km =1.621 to )‘min = 1.0.
Figure 1(a) (\ = 1.62) shows the Fourier spectrum and the time history of u. This broad
spectrum, with its intermittent bursts and quie-t.ness. appears to correspond to
observations described in Ref. 3. In Fig. 1(b) (A = 1.52) the frequency peaks become
narrower, and the amplitude variations become smaller.

In Fig. 2(a) (\ = 1.449), the time history shows that the system attempts to settle to
the fixed point (u* =1 - 1/\) a.ftér some transient time. The competition between the

approach to the fixed point (due to \) and the diffﬁsion away from the fixed point (due to
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g) gives rise to the instability observed. In Fig. 2(a) (\ = 1.449) the Fourler spectrum
exhibits noncommensurate frequencies, as observed by Mauer and Libchaber.3
As '\ is decreased further, 'the frequencies are .entra.ined (Fig. 2(b) \ =1.49) and
locked (Fig. 3(a) \ = 1.48). _
The most interesting results are shown in Fig. 3(b) (\ = 1.00). The spectra manifest
Kolmogorov-like behavior [P(f) « £~°, with x = 5/3). This type of smooth power spectrum

is observed when the system successfully approaches the fixed point. Note that for A =1

and g = .915, « is slightly greater than 5/3.1% We found, in Table 1, ¢ = 1.66 only at A = 1
and g = 0.

We generate visible patterns with the two-dimensional Eq. (3) by use of a new
graphical technique,” scaling the u(j, k) to a 0-to-256 linear gray scale. Simulations of
this sort correspond quite closely to the patterns seen by Dubois and Bergé8 in their
experiments with silicon oil. |

In the simulation of these patterns, the u(j, k) are assigned initial (n = 1) random
values between 0 and 1, resulting at most in small-scale random patterns at that time. As
time increases, these patterns disappear into a highly uniform sea (when u L approaches
the fixed point); eventually, however, large-scale structures grow, evolve, and
temporarily or permanently stabilize. Fig. 4 shows the pattern developed in a 50xSO
lattice for \ = 1.5, g = .905. _

We have chosen to study only the simple fixed po-ints region 1 < '\ < 3 of the logistic
map, Eq.(22). As long as g =0, this branch produces uninteresting behavior: the u
approach the fixed point u* = 1 - 1/\. Without g, there is no instability in this region, and
no patterns. When we turn g on, however, depending on the values of g and \, we may we
get rich and interesting behaviors. clearly, in Figs. 1 and 2, g acts_ to keep the u L from

their tendency toward the fixed point. Thus instabilities appear to result from a
competition between tendencies towards the fixed points and away from it, and the time

history intermittency phenomenon (Fig. 1a) is, in fact, a consequence of this competition.



In the region 1 <\ < 3 of the logistic map, the Lyapunov exponent is negative, as is
the corresponding entropy flow. However, the dissipative term g gives a positive entropy
flow for large enough g. The comi:etition between these two entropy flows gives rise to
pattern formation. In an open system; the change of entropy is expressed by the sum of
the entropy produced inside the system diS, and the entropy supplied externally or given
off to the surroundings, d_S: |

dS=d.S+dS

The quantity dis is always positive according to the second law of thermodynamics. The
quantity deS depends on the exchange of heat, matter and charge bgtween the system and
its environment. In our model, the lattice represents an open system. At each iteration
we apply a recursion relation that comprises two terms: a diffusion term represented by
nearest neighbors coupling, and a nonlinear driving term, represented by a quadratic map.
The lattice is started with random u's and the entropy of the lattice system is large. As
the time n increases, for specific values of \ and g, patterns are formed and the entropy
changes accordingly. Thus, we can regard recursion relations of the form of Egs. (2) and
(3) as the simplest mechanisms for introducing entropy changes into the lattice, which in
this case is an open system, at each iteration.

We now discuss the critical exponent x in the power spectrum P(f) « £ . In many
aspects, critical and chaofic phenomena manifest scgling and universal.ity.19 In critical
phenomena, the order of phase transition reflects the physics of the system at the critical
point. In chaotic phenofnena. it is perhaps the order p of the critical point that
determines the universal metric properties1 represented by § and a. Following the
approach of Hu and Satija,zo we determine § and a from a generalized logistic map, LY
= kun(l - us). Table 1 shows §, a, and « for several values of the exponent p.
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Experimental data?! show that p =1 is preferred. In this study, we calculated k as
a function of p for the trivial fixed-point case (\ = 1). The fact that x = 1.66, very close
to x =5/3 measured by Cha.mpaéne in wind tunnel expel_-imem:s.18 again confirms the
quadratic nature of the map used. It is tempting to enlarge the set §, a of universal
constants of the logistic map to include «, and to postulate that this x is the Kolmogorov
exponent. |

In conclusion, we note that the variety of phenomena experimentally observed in the
approach to turbulence has brought forth a variety of explanations: for example,
intermittency can be expla.ined22 by the Lorenz model; the lock-in phenomenon can be
explained by the Flaherty and Hoppensteadt model.”’ In our model, by putting the
quadratic map on the lattice with nearest neighbors coupling, we economically recover all
these phenomena.

The author thanks P. R. Keller for the graphics used in this paper and P. W. Murphy
for editorial assistance. He thanks his colleagues at Lawrence Livermore and Los Alamos
National Laboratories for numerous profitable discussions. He also thanks the Aspen
Institute for Physics for their hospitality and the p&ticipants for stimulating discussions.
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Table 1. Valueszo of the Feigenbaum § and a, and of our power spectrum exponent x, for

various values of p in the generalized logistic map LN N n(1 - ug).

P & a K

0 2 . @ 0
1 4.6692 2.5029 1.66
2 6.05847 1.9277 1.93
3 7.2851 1.6903 1;96
10 13.15 1.27 1.99

FIGURE CAPTIONS

Figure 1. (Top to bottom: Fourier sbectrum of U and enlargement of
indicated portion of un.) (2) g = 0.915, \ = 1.62; (b) N =1.52.

Figure 2. (Same plots as in Fig. 1.) (a) g = 0.915, \ = 1.499; (b) \ = 1.490.

Figure 3. (Same plots as in Fig. 1.) (2) g = 0.915, \ = 1.48; (b) \ = 1.00.

Figure 4. Patterns generated by a 50 x SO lattice with '\ = 1.50, g = .905 and n = 90.
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